PriorityQueue in C#

PriorityQueue is a binary heap. Heap is commonly used algorithm. in some area such Graph shortest path and minimum spanning tree, it is very helpful.

both Java and C++ has PriorityQueue, but C# don’t have.

Here is a version of PriorityQueue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/// <summary>
    /// 
    /// </summary>
    /// <typeparam name="T"></typeparam>
    public class PriorityQueue<T> where T : IComparable<T>
    {
        private List<T> data;
        private bool isMaxHeap = false; 
        /// <summary>
        /// 
        /// </summary>
        public PriorityQueue()
        {
            this.data = new List<T>();
        }
 
        /// <summary>
        /// 
        /// </summary>
        /// <param name="isMaxHeap"></param>
        public PriorityQueue(bool isMaxHeap)
        {
            this.data = new List<T>();
            this.isMaxHeap = isMaxHeap;
        }
 
        /// <summary>
        /// 
        /// </summary>
        /// <param name="item"></param>
        public void Enqueue(T item)
        {
            data.Add(item);
            int ci = data.Count - 1; // child index; start at end
            while (ci > 0)
            {
                int pi = (ci - 1) / 2; // parent index
                if(isMaxHeap)
                {
                    if (data[ci].CompareTo(data[pi]) <= 0) break;
                } else if (data[ci].CompareTo(data[pi]) >= 0)
                    break; // child item is larger than (or equal) parent so we're done
                T tmp = data[ci]; data[ci] = data[pi]; data[pi] = tmp;
                ci = pi;
            }
        }
        /// <summary>
        /// 
        /// </summary>
        /// <returns></returns>
        public T Dequeue()
        {
            // assumes pq is not empty; up to calling code
            int li = data.Count - 1; // last index (before removal)
            T frontItem = data[0];   // fetch the front
            data[0] = data[li];
            data.RemoveAt(li);
 
            --li; // last index (after removal)
            int pi = 0; // parent index. start at front of pq
            while (true)
            {
                int ci = pi * 2 + 1; // left child index of parent
                if (ci > li) break;  // no children so done
                int rc = ci + 1;     // right child
                if (isMaxHeap)
                {
                    if (rc <= li && data[rc].CompareTo(data[ci]) >= 0) // if there is a rc (ci + 1), and it is smaller than left child, use the rc instead
                        ci = rc;
                    if (data[pi].CompareTo(data[ci]) >= 0) break; // parent is smaller than (or equal to) smallest child so done
                }
                else
                {
 
                    if (rc <= li && data[rc].CompareTo(data[ci]) < 0) // if there is a rc (ci + 1), and it is smaller than left child, use the rc instead
                        ci = rc;
                    if (data[pi].CompareTo(data[ci]) <= 0) break; // parent is smaller than (or equal to) smallest child so done
                }
 
                T tmp = data[pi]; data[pi] = data[ci]; data[ci] = tmp; // swap parent and child
                pi = ci;
            }
            return frontItem;
        }
 
        /// <summary>
        /// 
        /// </summary>
        /// <returns></returns>
        public T Peek()
        {
            T frontItem = data[0];
            return frontItem;
        }
 
        /// <summary>
        /// 
        /// </summary>
        /// <returns></returns>
        public int Count()
        {
            return data.Count;
        }
 
        public override string ToString()
        {
            string s = "";
            for (int i = 0; i < data.Count; ++i)
                s += data[i].ToString() + " ";
            s += "count = " + data.Count;
            return s;
        }
 
        public bool IsConsistent()
        {
            // is the heap property true for all data?
            if (data.Count == 0) return true;
            int li = data.Count - 1; // last index
            for (int pi = 0; pi < data.Count; ++pi) // each parent index
            {
                int lci = 2 * pi + 1; // left child index
                int rci = 2 * pi + 2; // right child index
 
                if (lci <= li && data[pi].CompareTo(data[lci]) > 0) return false; // if lc exists and it's greater than parent then bad.
                if (rci <= li && data[pi].CompareTo(data[rci]) > 0) return false; // check the right child too.
            }
            return true; // passed all checks
        } // IsConsistent
    }
This entry was posted in Algorithm. Bookmark the permalink.